Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Biochem Biophys Res Commun ; 708: 149819, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531221

RESUMO

Metastasis, which is the spread of cancer cells into distant organs, is a critical determinant of prognosis in patients with cancer, and blood vessels are the major route for cancer cells to spread systemically. Extravasation is a critical process for the hematogenous metastasis; however, its underlying molecular mechanisms remain poorly understood. Here, we identified that senescent ECs highly express C-type lectin domain family 1 member B (CLEC-1b), and that endothelial CLEC-1b inhibits the hematogenous metastasis of a certain type of cancer. CLEC-1b expression was enhanced in ECs isolated from aged mice, senescent cultured human ECs, and ECs of aged human. CLEC-1b overexpression in ECs prevented the disruption of endothelial integrity, and inhibited the transendothelial migration of cancer cells expressing podoplanin (PDPN), a ligand for CLEC-1b. Notably, target activation of CLEC-1b in ECs decreased the hematogenous metastasis in the lungs by cancer cells expressing PDPN in mice. Our data reveal the protective role of endothelial CLEC-1b against cancer hematogenous metastasis. Considering the high CLEC-1b expression in senescent ECs, EC senescence may play a beneficial role with respect to the cancer hematogenous metastasis.


Assuntos
Lectinas Tipo C , Neoplasias , Idoso , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Migração Transendotelial e Transepitelial
2.
Arterioscler Thromb Vasc Biol ; 44(4): 883-897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328936

RESUMO

BACKGROUND: Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS: Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS: In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS: Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.


Assuntos
Receptores de Lisoesfingolipídeo , Migração Transendotelial e Transepitelial , Camundongos , Animais , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Esfingosina/metabolismo , Células Mieloides/metabolismo , Lisofosfolipídeos/metabolismo , Túnica Íntima/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069061

RESUMO

Dysregulated B cell receptor-associated protein 31 (BAP31) plays a crucial role in tumor progression. This study aimed to investigate the functions and molecular mechanism of BAP31 on the miR-206/133b cluster in colorectal cancer (CRC). qPCR was conducted to detect miRNA and mRNA levels in tissues and cells. Western blot assays were used to assess the levels of biomarkers and targets, as well as the levels of BAP31 and HOXD10. Wound healing, coculture and transwell assays were conducted to assess the transendothelial migration abilities of CRC cells. A luciferase assay was employed to assess miRNA binding effects on targets, as well as the initiating transcription effect of genomic fragments. Tumor growth and lung metastatic models were established through an in vivo animal study. BAP31 overexpression in CRC cells led to a reduction in the expression of the miR-206/133b cluster. The expression of the miR-206/133b cluster was correlated with the transendothelial migration capability of CRC cells. The miR-206/133b cluster was found to directly regulate cell division cycle 42 (CDC42) and actin-related protein 2/3 complex subunit 5 (ARPC5) in the tight junction pathway (hsa04530). Moreover, a potential transcription regulator of the miR-206/133b cluster was also found to be Homeobox D10 (HOXD10). We further elucidated the molecular mechanisms and functional mechanisms of BAP31's regulatory role in the expression levels of the miR-206/133b cluster by inhibiting HOXD10 translocation from the cytoplasm to the nucleus. In conclusion, this study provides valuable insights into how BAP31 regulates the transcription of the miR-206/133b cluster and how BAP31-related lung metastases arise in CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , MicroRNAs , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Migração Transendotelial e Transepitelial
4.
Biochem Biophys Res Commun ; 682: 180-186, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37820453

RESUMO

Temsirolimus is a first-generation mTOR inhibitor commonly used in the clinical treatment of cancers that is associated with lung injury. However, the mechanism underlying this adverse effect remains elusive. Endothelial barrier dysfunction plays a pivotal role in the infiltration of neutrophils into the pulmonary alveoli, which eventually induces lung injury. The present study demonstrates that temsirolimus induces the aberrant expression of adhesion molecules in endothelial cells, leading to enhanced neutrophil infiltration and subsequent lung injury. Results of a mouse model revealed that temsirolimus disrupted capillary-alveolar barrier function and facilitated neutrophil transmigration across the endothelium within the alveolar space. Consistent with our in vivo observations, temsirolimus impaired intercellular barrier function within monolayers of human lung endothelial cells, resulting in increased neutrophil infiltration. Furthermore, we demonstrated that temsirolimus-induced neutrophil transendothelial migration was mediated by platelet endothelial cell adhesion molecule-1 (PECAM-1) in both in vitro and in vivo experiments. Collectively, these findings highlight that temsirolimus induces endothelial barrier dysfunction via PECAM-1-dependent pathway both in vitro and in vivo, ultimately leading to neutrophil infiltration and subsequent pulmonary injury.


Assuntos
Lesão Pulmonar , Animais , Camundongos , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Migração Transendotelial e Transepitelial , Movimento Celular , Endotélio Vascular/metabolismo
5.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643615

RESUMO

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Assuntos
Migração Transendotelial e Transepitelial , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Adesão Celular , Movimento Celular , Endotélio Vascular , Mecanotransdução Celular , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Microbiol Spectr ; 11(3): e0476922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199607

RESUMO

Porphyromonas gingivalis is an important periodontal pathogen that can cause vascular injury and invade local tissues through the blood circulation, and its ability to evade leukocyte killing is critical to its distal colonization and survival. Transendothelial migration (TEM) is a series of that enable leukocytes to squeeze through endothelial barriers and migrate into local tissues to perform immune functions. Several studies have shown that P. gingivalis-mediated endothelial damage initiates a series of proinflammatory signals that promote leukocyte adhesion. However, whether P. gingivalis is involved in TEM and thus influences immune cell recruitment remains unknown. In our study, we found that P. gingivalis gingipains could increase vascular permeability and promote Escherichia coli penetration by downregulating platelet/endothelial cell adhesion molecule 1 (PECAM-1) expression in vitro. Furthermore, we demonstrated that although P. gingivalis infection promoted monocyte adhesion, the TEM capacity of monocytes was substantially impaired, which might be due to the reduced CD99 and CD99L2 expression on gingipain-stimulated endothelial cells and leukocytes. Mechanistically, gingipains mediate CD99 and CD99L2 downregulation, possibly through the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, our in vivo model confirmed the role of P. gingivalis in promoting vascular permeability and bacterial colonization in the liver, kidney, spleen, and lung and in downregulating PECAM-1, CD99, and CD99L2 expression in endothelial cells and leukocytes. IMPORTANCE P. gingivalis is associated with a variety of systemic diseases and colonizes in distal locations in the body. Here, we found that P. gingivalis gingipains degrade PECAM-1 to promote bacterial penetration while simultaneously reducing leukocyte TEM capacity. A similar phenomenon was also observed in a mouse model. These findings established P. gingivalis gingipains as the key virulence factor in modulating the permeability of the vascular barrier and TEM processes, which may provide a new rationale for the distal colonization of P. gingivalis and its associated systemic diseases.


Assuntos
Porphyromonas gingivalis , Migração Transendotelial e Transepitelial , Camundongos , Animais , Cisteína Endopeptidases Gingipaínas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adesinas Bacterianas/metabolismo
7.
Adv Sci (Weinh) ; 10(16): e2206554, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051804

RESUMO

Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.


Assuntos
Neoplasias , Migração Transendotelial e Transepitelial , Células Endoteliais , Endotélio , Actinas , Fenômenos Mecânicos
8.
Angiogenesis ; 26(3): 349-362, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36867287

RESUMO

Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell-cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.


Assuntos
Moléculas de Adesão Celular , Migração Transendotelial e Transepitelial , Nectinas , Movimento Celular/fisiologia , Adesão Celular
9.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806233

RESUMO

In inflammatory diseases, polymorphonuclear neutrophils (PMNs) are known to produce elevated levels of pro-inflammatory cytokines and proteases. To limit ensuing exacerbated cell responses and tissue damage, novel therapeutic agents are sought. 4aa and 4ba, two pyridazinone-scaffold-based phosphodiesterase-IV inhibitors are compared in vitro to zardaverine for their ability to: (1) modulate production of pro-inflammatory mediators, reactive oxygen species (ROS), and phagocytosis; (2) modulate degranulation by PMNs after transepithelial lung migration. Compound 4ba and zardaverine were tested in vivo for their ability to limit tissue recruitment of PMNs in a murine air pouch model. In vitro treatment of lipopolysaccharide-stimulated PMNs with compounds 4aa and 4ba inhibited the release of interleukin-8, tumor necrosis factor-α, and matrix metalloproteinase-9. PMNs phagocytic ability, but not ROS production, was reduced following treatment. Using a lung inflammation model, we proved that PMNs transmigration led to reduced expression of the CD16 phagocytic receptor, which was significantly blunted after treatment with compound 4ba or zardaverine. Using the murine air pouch model, LPS-induced PMNs recruitment was significantly decreased upon addition of compound 4ba or zardaverine. Our data suggest that new pyridazinone derivatives have therapeutic potential in inflammatory diseases by limiting tissue recruitment and activation of PMNs.


Assuntos
Neutrófilos , Fagocitose , Animais , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Migração Transendotelial e Transepitelial
10.
J Thromb Haemost ; 20(10): 2350-2365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35722954

RESUMO

BACKGROUND: Breast cancer results in a three- to four-fold increased risk of venous thromboembolism (VTE), which is associated with reduced patient survival. Despite this, the mechanisms underpinning breast cancer-associated thrombosis remain poorly defined. Tumor cells can trigger endothelial cell (EC) activation resulting in increased von Willebrand factor (VWF) secretion. Importantly, elevated plasma VWF levels constitute an independent biomarker for VTE risk. Moreover, in a model of melanoma, treatment with low molecular weight heparin (LMWH) negatively regulated VWF secretion and attenuated tumor metastasis. OBJECTIVE: To investigate the role of VWF in breast cancer metastasis and examine the effect of LMWH in modulating EC activation and breast tumor transmigration. METHODS: von Willebrand factor levels were measured by ELISA. Primary ECs were used to assess tumor-induced activation, angiogenesis, tumor adhesion, and transendothelial migration. RESULTS AND CONCLUSION: Patients with metastatic breast cancer have markedly elevated plasma VWF:Ag levels that also correlate with poorer survival. MDA-MB-231 and MCF-7 breast cancer cells induce secretion of VWF, angiopoietin-2, and osteoprotegerin from ECs, which is further enhanced by the presence of platelets. Vascular endothelial growth factor-A (VEGF-A) plays an important role in modulating breast cancer-induced VWF release. Moreover, VEGF-A from breast tumor cells also contributes to a pro-angiogenic effect on ECs. VWF multimers secreted from ECs, in response to tumor-VEGF-A, mediate adhesion of breast tumor cells along the endothelium. LMWH inhibits VWF-breast tumor adhesion and transendothelial migration. Our findings highlight the significant crosstalk between tumor cells and the endothelium including increased VWF secretion which may contribute to tumor metastasis.


Assuntos
Neoplasias da Mama , Tromboembolia Venosa , Angiopoietina-2/metabolismo , Neoplasias da Mama/metabolismo , Células Endoteliais/metabolismo , Feminino , Heparina de Baixo Peso Molecular/farmacologia , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos , Osteoprotegerina/metabolismo , Migração Transendotelial e Transepitelial , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tromboembolia Venosa/metabolismo , Fator de von Willebrand/metabolismo
11.
Cancer Res ; 82(13): 2472-2484, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580275

RESUMO

Migration of myeloid-derived suppressor cells (MDSC) out of the circulation, across vascular walls, and into tumor is crucial for their immunosuppressive activity. A deeper understanding of critical junctional molecules and the regulatory mechanisms that mediate the extravasation of MDSCs could identify approaches to overcome cancer immunosuppression. In this study, we used mice deficient in tight junction protein Claudin-12 (Cldn12) compared with wild-type mice and found that loss of host Cldn12 inhibited the growth of transplanted tumors, reduced intratumoral accumulation of MDSCs, increased antitumor immune responses, and decreased tumor vascular density. Further studies revealed that Cldn12 expression on the cell surface of both MDSCs and endothelial cells (EC) is required for MDSCs transit across tumor vascular ECs. Importantly, expression of Cldn12 in MDSCs was modulated by GM-CSF in an AKT-dependent manner. Therefore, our results indicate that Cldn12 could serve as a promising target for restoring the antitumor response by interfering with MDSCs transendothelial migration. SIGNIFICANCE: Claudin-12-mediated homotypic interactions are critical for migration of myeloid-derived suppressor cells across vascular walls into tumor tissue, providing a potential therapeutic approach to overcome cancer immunosuppression.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Claudinas/metabolismo , Células Endoteliais , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Migração Transendotelial e Transepitelial
12.
Oxid Med Cell Longev ; 2022: 8407635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620579

RESUMO

Explosion-induced injury is the most commonly encountered wound in modern warfare and incidents. The vascular inflammatory response and subsequent oxidative stress are considered the key causes of morbidity and mortality among those in blast lung injury. It has been reported dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays important roles in regulating vascular endothelial injury repair and angiogenesis, but its role in explosion-induced injury remains to be explained. To explore the mechanism of vascular injury in blast lung, 40 C57BL/6 wild type mice and 40 DDAH1 knockout mice were randomly equally divided into control group and blast group, respectively. Body weight, lung weight, and dry weight of the lungs were recorded. Diffuse vascular leakage was detected by Evans blue test. The serum inflammatory factors, nitric oxide (NO) contents, and ADMA level were determined through ELISA. Hematoxylin-eosin staining and ROS detection were performed for histopathological changes. Western blot was used to detect the proteins related to oxidative stress, cell adhesion molecules and leukocyte transendothelial migration, vascular injury, endothelial barrier dysfunction, and the DDAH1/ADMA/eNOS signaling pathway. We found that DDAH1 deficiency aggravated explosion-induced body weight reduction, lung weight promotion, diffuse vascular leakage histopathological changes, and the increased levels of inflammatory-related factors. Additionally, DDAH1 deficiency also increased ROS generation, MDA, and IRE-1α expression. Regarding vascular endothelial barrier dysfunction, DDAH1 deficiency increased the expression of ICAM-1, Itgal, Rac2, VEGF, MMP9, vimentin, and N-cadherin, while lowering the expression of occludin, CD31, and dystrophin. DDAH1 deficiency also exacerbated explosion-induced increase of ADMA and decrease of eNOS activity and NO contents. Our results indicated that explosion could induce severe lung injury and pulmonary vascular insufficiency, whereas DDAH1 could promote lung endothelial barrier repair and reduce inflammation and oxidative stress by inhibiting ADMA signaling which in turn increased eNOS activity.


Assuntos
Lesão Pulmonar , Lesões do Sistema Vascular , Amidoidrolases/metabolismo , Animais , Explosões , Leucócitos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Migração Transendotelial e Transepitelial
13.
Nat Commun ; 13(1): 2176, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449134

RESUMO

Programmed death-1 (PD-1) and its ligand PD-L1 are checkpoint molecules which regulate immune responses. Little is known about their functions in T cell migration and there are contradictory data about their roles in regulatory T cell (Treg) function. Here we show activated Tregs and CD4 effector T cells (Teffs) use PD-1/PD-L1 and CD80/PD-L1, respectively, to regulate transendothelial migration across lymphatic endothelial cells (LECs). Antibody blockade of Treg PD-1, Teff CD80 (the alternative ligand for PD-L1), or LEC PD-L1 impairs Treg or Teff migration in vitro and in vivo. PD-1/PD-L1 signals through PI3K/Akt and ERK to regulate zipper junctional VE-cadherin, and through NFκB-p65 to up-regulate VCAM-1 expression on LECs. CD80/PD-L1 signaling up-regulates VCAM-1 through ERK and NFκB-p65. PD-1 and CD80 blockade reduces tumor egress of PD-1high fragile Tregs and Teffs into draining lymph nodes, respectively, and promotes tumor regression. These data provide roles for PD-L1 in cell migration and immune regulation.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Células Endoteliais/metabolismo , Ligantes , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores , Migração Transendotelial e Transepitelial , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Blood ; 140(3): 171-183, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35443048

RESUMO

The extravasation of leukocytes is a critical step during inflammation that requires the localized opening of the endothelial barrier. This process is initiated by the close interaction of leukocytes with various adhesion molecules such as ICAM-1 on the surface of endothelial cells. Here we reveal that mechanical forces generated by leukocyte-induced clustering of ICAM-1 synergize with fluid shear stress exerted by the flowing blood to increase endothelial plasma membrane tension and to activate the mechanosensitive cation channel PIEZO1. This leads to increases in [Ca2+]i and activation of downstream signaling events including phosphorylation of tyrosine kinases sarcoma (SRC) and protein tyrosine kinase 2 (PYK2), as well as of myosin light chain, resulting in opening of the endothelial barrier. Mice with endothelium-specific Piezo1 deficiency show decreased leukocyte extravasation in different inflammation models. Thus, leukocytes and the hemodynamic microenvironment synergize to mechanically activate endothelial PIEZO1 and subsequent downstream signaling to initiate leukocyte diapedesis.


Assuntos
Canais Iônicos , Leucócitos , Migração Transendotelial e Transepitelial , Animais , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Leucócitos/metabolismo , Camundongos
15.
Methods Mol Biol ; 2441: 329-338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099749

RESUMO

During metastasis, a subset of cancer cells will break away from the primary tumor and invade into the surrounding tissue. Cancer cells which are able to breach the endothelium and enter the blood stream are then transported in the circulation to new target organs where they may seed as a distant metastasis. In order to invade this new organ, the cancer cells must bind to and traverse the vascular wall, a process known as transendothelial migration (TEM) or extravasation. This chapter describes an in vitro approach to automated live cell imaging and analysis of TEM in order to accurately quantify these kinetics and aid the researcher in dissecting the mechanisms of tumor-endothelial interactions during this phase of metastasis.


Assuntos
Endotélio Vascular , Neoplasias , Movimento Celular , Endotélio Vascular/metabolismo , Humanos , Neoplasias/patologia , Migração Transendotelial e Transepitelial
16.
Cell Rep ; 38(3): 110243, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045291

RESUMO

Understanding how cytotoxic T lymphocytes (CTLs) efficiently leave the circulation to target cancer cells or contribute to inflammation is of high medical interest. Here, we demonstrate that human central memory CTLs cross the endothelium in a predominantly paracellular fashion, whereas effector and effector memory CTLs cross the endothelium preferably in a transcellular fashion. We find that effector CTLs show a round morphology upon adhesion and induce a synapse-like interaction with the endothelium where ICAM-1 is distributed at the periphery. Moreover, the interaction of ICAM-1:ß2integrin and endothelial-derived CX3CL1:CX3CR1 enables transcellular migration. Mechanistically, we find that ICAM-1 clustering recruits the SNARE-family protein SNAP23, as well as syntaxin-3 and -4, for the local release of endothelial-derived chemokines like CXCL1/8/10. In line, silencing of endothelial SNAP23 drives CTLs across the endothelium in a paracellular fashion. In conclusion, our data suggest that CTLs trigger local chemokine release from the endothelium through ICAM-1-driven signals driving transcellular migration.


Assuntos
Quimiocina CX3CL1/metabolismo , Endotélio Vascular/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Linfócitos T Citotóxicos/metabolismo , Migração Transendotelial e Transepitelial/fisiologia , Humanos
17.
J Reprod Immunol ; 149: 103440, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775290

RESUMO

Lymphocytes in the colostrum play many important roles during lactation, including protecting newborn piglets against infections. The lymphocytes constantly enter the mammary gland from the mother's bloodstream before and during lactation. However, little is known about the mechanism of transport of maternal lymphocytes across the mammary glands into the milk (lumen). In this study, the maternal lymphocytes were detected in sow colostrum by immunofluorescent staining and fluorescence-activated cell sorting and lymphocytes were observed transmigrating into the breast acinar lumen. Furthermore, immunohistochemical staining revealed that CD3+ T, γδ+ T, and IgA+ B cells were primarily located at the base area of the mammary gland. Meanwhile, more lactating alveoli and blood capillaries were distributed in this area. Finally, a mammary epithelial cell (EpH4-Ev)/T cell co-culture system was established to explore the mechanism of lymphocyte transmigration across the mammary epithelial cells. The expression of CCL2 and CCL28 in EpH4-Ev cells, which facilitated the transmigration of lymphocytes, significantly increased in the presence of prolactin. Our results provide a better understanding of the concept of lactogenic immunity and pave the way for vaccination strategies for the induction of lactogenic immunity in pregnant swine.


Assuntos
Movimento Celular , Linfócitos , Leite , Migração Transendotelial e Transepitelial , Animais , Linfócitos B/imunologia , Células Epiteliais/metabolismo , Feminino , Imunidade Materno-Adquirida/efeitos dos fármacos , Lactação/imunologia , Glândulas Mamárias Animais/metabolismo , Leite/citologia , Gravidez , Prolactina/metabolismo , Suínos
18.
J Neuroimmune Pharmacol ; 17(3-4): 427-436, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599741

RESUMO

Disruption of the blood brain barrier (BBB) is a common event in several neurological diseases and in particular, in multiple sclerosis (MS), it contributes to the infiltration of the central nervous system by peripheral inflammatory cells. Sphingosine-1-phosphate (S1P) is a bioactive molecule with pleiotropic effects. Agonists of S1P receptors such as fingolimod and siponimod (BAF-312) are in clinical practice for MS and have been shown to preserve BBB function in inflammatory conditions. Using an in vitro BBB model of endothelial-astrocytes co-culture exposed to an inflammatory insult (tumor necrosis factor-α and interferon-γ; T&I), we show that BAF-312 reduced the migration of peripheral blood mononuclear cells (PBMCs) through the endothelial layer, only in the presence of astrocytes. This effect was accompanied by decreased expression of the adhesion molecule ICAM-1. BAF-312 also reduced the activation of astrocytes, by controlling NF-kB and NLRP3 induction and preventing the increase of proinflammatory cytokine and chemokines. Reduction of CCL2 by BAF-312 may be responsible for the observed effects and, accordingly, addition of exogenous CCL2 was able to counteract BAF-312 effects and rescued T&I responses on PBMC migration, ICAM-1 expression and astrocyte activation. The present results further point out BAF-312 effects on BBB properties, suggesting also the key role of astrocytes in mediating drug effects on endothelial function.


Assuntos
Astrócitos , Barreira Hematoencefálica , Barreira Hematoencefálica/metabolismo , Leucócitos Mononucleares , Molécula 1 de Adesão Intercelular , Migração Transendotelial e Transepitelial , Células Endoteliais/metabolismo , Células Cultivadas
19.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769191

RESUMO

The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFß) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFß on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFß receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFß-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFß-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFß as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFß signaling as a therapeutic target in HCC patients.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia , Microambiente Tumoral , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Hepatocelular/patologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/patologia , Linfócitos T Reguladores/patologia , Migração Transendotelial e Transepitelial
20.
Biomed Pharmacother ; 144: 112255, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607110

RESUMO

Chronic inflammation is characterized by persisting leukocyte infiltration of the affected tissue, which is enabled by activated endothelial cells (ECs). Chronic inflammatory diseases remain a major pharmacotherapeutic challenge, and thus the search for novel drugs and drug targets is an ongoing demand. We have identified the natural product vioprolide A (vioA) to exert anti-inflammatory actions in vivo and in ECs in vitro through inhibition of its cellular target nucleolar protein 14 (NOP14). VioA attenuated the infiltration of microglia and macrophages during laser-induced murine choroidal neovascularization and the leukocyte trafficking through the vascular endothelium in the murine cremaster muscle. Mechanistic studies revealed that vioA downregulates EC adhesion molecules and the tumor necrosis factor receptor (TNFR) 1 by decreasing the de novo protein synthesis in ECs. Most importantly, we found that inhibition of importin-dependent NF-ĸB p65 nuclear translocation is a crucial part of the action of vioA leading to reduced NF-ĸB promotor activity and inflammatory gene expression. Knockdown experiments revealed a causal link between the cellular target NOP14 and the anti-inflammatory action of vioA, classifying the natural product as unique drug lead for anti-inflammatory therapeutics.


Assuntos
Anti-Inflamatórios/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/tratamento farmacológico , Carioferinas/metabolismo , Leucócitos/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Proteínas Nucleares/metabolismo , Fator de Transcrição RelA/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/imunologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Carioferinas/genética , Leucócitos/imunologia , Leucócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Proteínas Nucleares/genética , Fator de Transcrição RelA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA